# **Ankle-Brachial Index Screening** for Peripheral Artery Disease in **Uganda: Building a Training Model and Exploring the Feasibility and Acceptability of Implementation Strategies**

Brinza EK, Ssebuliba M, Iraguha D, Nalukwago G, McCabe MM, Grattan A, Nowacki A, Gornik HG, Okello E, Kityo C, Longenecker C

### Intro

- Peripheral artery disease (PAD) increases risk of heart attack, stroke<sup>1</sup>
- Prevalence increasing disproportionately in lowand middle-income countries<sup>2</sup>
- Non-invasive, low-cost PAD screening test: anklebrachial index (ABI) test<sup>3</sup>
- **Objective: Determine efficacy of PAD training** program and feasibility and acceptability of implementing PAD screening practices in Uganda

### **Population**

- Doctors recruited from Central/Eastern Uganda
- HIV sub-study: enrolled doctors who care for persons living with HIV (n=10) due to increased recognition of HIV as a risk factor for PAD<sup>4</sup>
- Future direction: enroll other healthcare workers, laypersons

# **Activities/Methods**

- Implementation science research study, guided by the Consolidated Framework for Implementation Research<sup>5</sup>
- Intervention: intensive, one-day PAD education, ABI training program, with follow-up testing
- Quantitative Study Outcomes: Competency (score >80%) in ABI procedures (measurement, calculation, interpretation)
- Focus group discussions to explore acceptability/feasibility

### Lessons Learned

- Hybrid remote/in-person teaching model may facilitate dissemination of knowledge
- Cohort of Ugandan doctors believed screening programs to be acceptable, desirable
- Key barriers to address include access to equipment, lack of awareness of PAD

# **Public Health Implications**

- High level of competency achieved supports feasibility of expanding PAD training and screening efforts
- Similar models may be used to promote implementation of PAD screening initiatives in lowresource settings
- Enhanced uptake of screening and knowledge of PAD may be used to combat rising prevalence seen in low- and middle-income countries



After an intensive training program, Ugandan physicians mastered perpheral artery disease screening techniques and supported scalingup implementation in the community.







**Cleveland Clinic** 



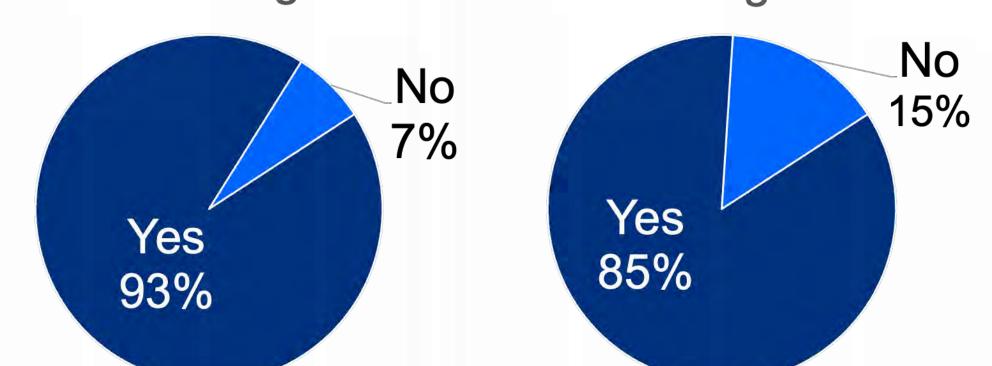
**University Hospitals**<sup>™</sup>





### Deliverables

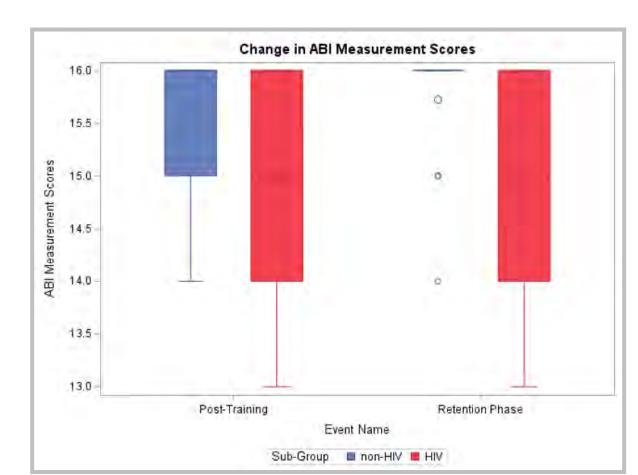
Quantitative and Qualitative Data

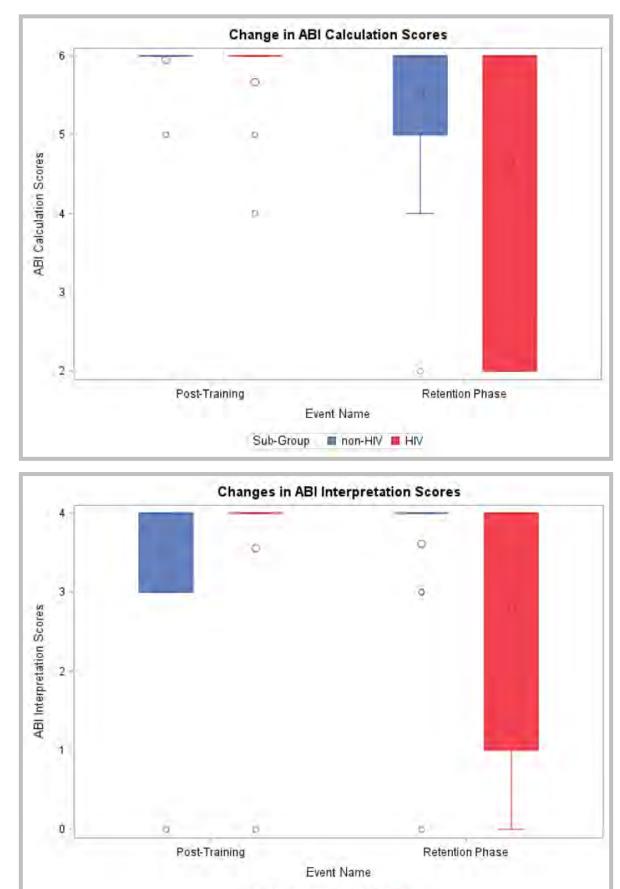

- Focus Group Interview Guide
- Focus Group Coding Template

### **Participant Demographics**

|                                     | Total Cohort<br>(N=29) | Non-HIV<br>Sub-Study<br>(N=19) | HIV Sub-<br>Study<br>(N=10) |
|-------------------------------------|------------------------|--------------------------------|-----------------------------|
| Age (yrs) <sup>+</sup>              | 32 (31-34)             | 31 (29-34)                     | 33 (31-42)                  |
| Sex (F)                             | 17 (58.6%)             | 10 (52.6%)                     | 7 (70.0%)                   |
| Highest Level of Education          |                        |                                |                             |
| MBChB                               | 18 (62.1%)             | 11 (57.9%)                     | 7 (70.0%)                   |
| Post-<br>graduate<br>diploma        | 1 (3.5%)               | 0 (0%)                         | 1 (10.0%)                   |
| MMed                                | 10 (34.5%)             | 8 (42.1%)                      | 2 (20.0%)                   |
| †Data is presented as median (IQR). |                        |                                |                             |

### **Proportion of Participants Achieving Competency in ABI Procedures**


Immediately After Two Months After Training Training




# Change in ABI Performance Scores based on study sub-

### group.

**Comparison of** scores on ABI measurement, calculation, and interpretation assessments over study timepoints, stratified by subgroup (non-HIV sub-study vs. HIV sub-study).





Sub-Group 🛛 🔳 non-HIV 📕 HIV

References Song P, Rudan D, Zhu Y, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health 2019; 7: e1020-e10

Abovans V. Crigui MH, Abraham P. et al. Measurement and Interpretation of the Ankle-Brachial Index: A Scientific Statement From the American Heart Association, Circulation 2012; 126; 2890–2905

Beckman JA, Duncan MS, Alcorn CW, et al. Association of Human Immunodeficiency Virus Infection and Risk of Peripheral Artery Disease. Circulation 2018; 138: 255-265 on DC, Keith RE, et al. Fostering implementation of health services research findings into practice: a consolidated framework f